Real-time Raman spectroscopy of optically trapped living cells and organelles
نویسندگان
چکیده
منابع مشابه
Near-infrared Raman spectroscopy of single optically trapped biological cells.
We report on the development and testing of a compact laser tweezers Raman spectroscopy (LTRS) system. The system combines optical trapping and near-infrared Raman spectroscopy for manipulation and identification of single biological cells in solution. A low-power diode laser at 785 nm was used for both trapping and excitation for Raman spectroscopy of the suspended microscopic particles. The d...
متن کاملRaman Spectroscopy of Optically Trapped Single Biological Micro-Particles
The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in l...
متن کاملAutofluorescence spectroscopy of optically trapped cells.
Cellular autofluorescence spectra were monitored in a single-beam gradient force optical trap ("optical tweezers") in order to probe the physiological effects of near infrared and UVA (320-400 nm) microirradiation. Prior to trapping, Chinese hamster ovary cells exhibited weak UVA-excited autofluorescence with maxima at 455 nm characteristic of beta-nicotinamide adenine dinucleotide (phosphate) ...
متن کاملMicro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells
We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanopar...
متن کاملHyperfine Spectroscopy of Optically Trapped Atoms
We perform spectroscopy on the hyperfine splitting of Rb atoms trapped in far-off-resonance optical traps. The existence of a spatially dependent shift in the energy levels is shown to induce an inherent dephasing effect, which causes a broadening of the spectroscopic line and hence an inhomogeneous loss of atomic coherence at a much faster rate than the homogeneous one caused by spontaneous ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2004
ISSN: 1094-4087
DOI: 10.1364/opex.12.006208